
OT-HELP 2.0: A COMPUTATIONAL TOOL
FOR PHONOLOGICAL ANALYSIS

ALI NIRHECHE
anirheche@umass.edu

Workshop at FLSHR-UM5, Rabat
January 2nd, 2026

ROADMAP

o OPTIMALITY THEORY VS. HARMONIC GRAMMAR

o WHY USE COMPUTATIONAL TOOLS?

o OT-HELP 2.0

o CASE STUDY 1: ENGLISH NASALS

o CASE STUDY 2: DEFINITE ARTICLE ASSIMILATION
IN MSA

o REAL-WORLD APPLICATION

2

OPTIMALITY THEORY
VS.

HARMONIC GRAMMAR

THEORETICAL REFRESHER: OPTIMALITY THEORY

o Core architecture:

o GEN: Generates infinite candidates.

o CON: UG provides a set of universal constraints (markedness and faithfulness)

o EVAL: Evaluates candidates based on a hierarchy of constraints.

o Strict Domination:

o Constraints are ranked (C1≫C2≫C3​).

o A violation of a higher-ranked constraint is fatal, regardless of how many times lower constraints
are violated.

o The winner: The candidate that survives the highest fatal violations.

4

BEYOND RANKING: HARMONIC GRAMMAR

o The shift:

o Proposed by Legendre et al (2006).

o Moves from Ranking to Weighting.

o How it works:

o Each constraint has a numerical Weight (𝑤).

o Violations are negative integers (usually -1).

o Harmony (H): The sum of weighted violations:

Harmony(H)=∑(Weight×Violations)

o The winner: The candidate with the highest (least negative) Harmony score.

5

BEYOND RANKING: HARMONIC GRAMMAR

o Let’s take this language which enforces the requirement to only have open syllables
through deletion.

o An OT tableau where NOCODA and DEP outranks MAX:

o An HG tableau where NOCODA and DEP has more weight than MAX:

6

WHY HARMONIC GRAMMAR? (THE "GANG EFFECT")

o The limitation of OT:

o In OT, if Constraint A dominates B and C (𝐴 ≫ 𝐵, 𝐶), one violation of A overcomes any number of
violations for B and C.

o Cumulative interaction (Gang Effects):

o In HG, lower-weighted constraints can "gang up" to overcome a higher-weighted constraint.

o Harmonic Grammar allows us to test if a language requires this kind of cumulative
interaction.

7

EXAMPLE OF THE GANG EFFECT

o No gang effect in OT:

8

o Gang effect in HG:

WHY USE COMPUTATIONAL
TOOLS?

THE LIMITS OF "PEN AND PAPER" PHONOLOGY

o Small-scale systems:

o We are used to analyzing small datasets (3-4 candidates, 3-4 constraints).

o It is easy to find a ranking for a single input by hand.

o The reality of research:

o Linguistic systems often involve dozens of inputs and constraints.

o The factorial growth of rankings:

o 3 Constraints = 3! (6 possible rankings).

o 5 Constraints = 5! (120 possible rankings).

o 10 Constraints = 10! (3,628,800 possible rankings).

o The human error factor:

o It is often difficult to manually check if a ranking for Input A contradicts the ranking required for
Input B and so on.

1 0

ADVANTAGES OF USING COMPUTATIONAL TOOLS

o Consistency:

o Computational tools don't make judgment calls. They apply the logic you give them.

o They ensures your analysis is internally consistent across all data points.

o Modeling the learning process (L1 Acquisition):

o Many tools (including OT-Help) use learning algorithms (e.g., Recursive Constraint Demotion)
that replicate how L1 learners arrives at a grammar.

o Factorial typology:

o Beyond analyzing one language, we want to know: What other languages does my constraint set
predict?

o Does your analysis predict impossible languages? (Overgeneration).

o Does your analysis miss attested languages? (Undergeneration).

1 1

MODELING THE LEARNER

o The learning problem:

o A child (the learner) is born with a set of universal constraints (CON).

o The child hears “data" (the winners) from their caregivers.

o The Task: Find the specific ranking that makes those winners optimal.

o Replicating the learner:

o Computational tools implement Learning Algorithms theorized to reflect how the human mind
works.

o Recursive Constraint Demotion (RCD) is an example of an algorithm used in such tools.

1 2

HOW RCD WORKS

o Tesar & Smolensky (1998) proposed that learning happens "top-down“.

o The learner compares the Winner (what they heard) against a Loser (what their current
grammar thinks is better).

o The learner identifies constraints that prefer no losers (those with no 'L' marks).

o These constraints are placed in the highest possible ranking tier.

o The learner then discards any loser that is ruled out by those constraints.

o The process repeats for the remaining constraints and remaining losers.

1 3

HOW RCD WORKS (EXAMPLE)

o Let’s look at our earlier pattern of coda deletion and see how the ranking is learned under
RCD.

o Step 1: All constraints are unranked.

1 4

HOW RCD WORKS (EXAMPLE)

o Step 2: both NOCODA and DEP do not prefer a loser, so they are put at a higher ranking tier.

1 5

HOW RCD WORKS (EXAMPLE)

o Step 3: NOCODA and DEP eliminate CVC and CV.CV.

o Since there are no other losers, the final ranking is: NOCODA, DEP >> MAX

1 6

OT-HELP 2.0

TOOLS FOR RUNNING OT AND HG SIMULATIONS

o OTSoft (Hayes et al 2013):

o An excel-based powerful tool for OT analysis, but requires Windows/Excel setup.

o Praat (Boersma & Weenink 2022):

o Known for phonetic analysis, but contains an OT learning module (GLA), but has a steep learning
curve and requires coding knowledge.

o OT-Help (Staubs et al 2010):

o Our focus today

o Java/web-based tool.

o User-friendly interface.

o It can solve for both Ranked Constraints (OT) and Weighted Constraints (Harmonic Grammar).

1 8

SETTING UP OT-HELP 2.0

1. Go to OT-help 2.0 webpage: https://people.umass.edu/othelp/download.html

2. Download OT-help 2.0 by clicking on OT-Help2.jar

3. Download or124.jar. This file must go inside a folder you should create and name "OTH-
lib". This folder should be within the same folder where you have OT-Help2.jar

4. If you don't have Java installed, you must install it. Here is where to download Java:
https://www.java.com/en/download/

o These instructions work for both Windows and Mac.

1 9

https://people.umass.edu/othelp/download.html
https://www.java.com/en/download/

HOW OT-HELP 2.0 WORKS

o Input:

o A simple .txt file (tab-delimited).

o Format: Matrix of inputs, candidates, and violations (basically your OT tableau).

o Processing:

o For OT: Uses Recursive Constraint Demotion (Tesar 1995; Tesar and Smolensky 1998) to find a
ranking.

o For HG: Uses Linear Programming to find weights.

o Output:

o Solvable? (Yes/No).

o The ranking or weights.

o The predicted typology (list of all possible languages).

2 0

FORMATTING INPUT FILE

o Rows 1 & 2: Constraint names

o Column 1: Inputs

o Column 2: Candidates

o Column 3: Winner indication (Put a "1" next to the actual output)

o Columns 4+: Violation marks (Integers: 1, 2, etc.)

o Let’s run the coda deletion simulation in OT-help.

2 1

CASE STUDY 1: ENGLISH NASALS

ENGLISH NASALS (D ATA F R O M U M A S S A M H E R S T L I N G 3 0 2)

o Let’s look at the nasal and oral vowels of English. What is their distribution?

2 3

GENERALIZATION

o The generalization:

o Vowels are oral generally.

o Vowels become nasalized only when preceding a nasal consonant.

o This is an allophonic distribution (Complementary Distribution).

o The goal:

o We want our grammar to force nasalization in:

o /pan/ → [pæ̃n]

o But prevent it in:

o /pad/ → [pæd].

2 4

CONSTRAINTS

o Markedness constraints:

o *VN: Assign one violation mark to every sequence of Oral Vowel + Nasal Consonant. (Don't have
oral vowels before nasals).

o *V-nas: Assign one violation mark to every nasal vowel. (Nasal vowels are marked).

o Faithfulness constraint:

o IDENT(nasal): Output nasality must match Input nasality.

o What is the ranking of these constraints? Create tableaux for /pad/ and /pan/.

2 5

OT ANALYSIS

o Ranking:

o *VN >> *V-nas, IDENT(nasal)

*VN *V-nas IDENT(nasal)

/pad/ ☛ pad

pãd *! *

/pan/ pan *!

☛ pãn * *

2 6

HG ANALYSIS

o Weighting:

o The weight of *VN alone must be heavier than the sum of the weights of *V-nas and IDENT(nasal)
combined.

*VN
w = 3

*V-nas
w = 1

IDENT(nasal)
w = 1 H

/pad/ ☛ pad 0

pãd -1 -1 -2

/pan/ pan -1 -3

☛ pãn -1 -1 -2
2 7

CREATING THE INPUT FILE

o Instructions:

1. Open your text editor (e.g., notepad).

2. Type the constraint names in the first two rows.

3. Enter the inputs /pan/ and /pad/ with their candidates (do not use ‘/’ in the text editor).

4. Use "1" to mark the winner, and violations.

o Note:

o In the text file, use TABS between columns, not spaces.

o You should use HTML code for special characters like IPA symbols and diacritics (ã -> ã)

o You may also edit the .txt file in an Excel spreadsheet.

2 8

CREATING THE INPUT FILE

o Check your text file against the one below.

*VN *V-nas IDENT(nasal)

*VN *V-nas IDENT(nasal)

pad pad 1

pãd 1 1

pan pan 1

pãn 1 1 1

2 9

RUNNING THE OT SOLUTION

o Instructions:

1. Open OT-Help2.jar.

2. Drag your text file into the OT-Help window.

3. Click "OT Solution".

4. Analyze the Result:

o Status: Solved (Blue background).

o Ranking Found: *VN >> *V-nas, IDENT(nasal)

o Does this match our hand-written analysis?

o What can you say about the typology?

3 0

RUNNING THE HG SOLUTION

o Instructions:

o Go back to the main page (or refresh).

o Click “HG Solution".

o Analyze the Result:

o Look at the numbers assigned.

o Does this match our hand-written analysis (the weight of *VN is heavier than the sum of the weights of
*V-nas and IDENT(nasal) combined)?

3 1

CASE STUDY 2: DEFINITE ARTICLE
ASSIMILATION IN ARABIC

DEFINITE ARTICLE ASSIMILATION IN MSA

o Let’s look at the following data from MSA. What is the generalization?

a. al-bint DEF-girl

al-kalaam DEF-speech

al-qaanuun DEF-law

al-ʕajn DEF-eye

b. ar-rabiiʕ DEF-spring

aθ-θawb DEF-tissue

as-salaam DEF-peace

aʃ-ʃams DEF-sun

3 3

GENERALIZATION

o General rule (faithfulness):

o Usually, the /l/ remains [l].

o Assimilation context:

o When /l/ is followed by a Coronal consonant (𝑡, 𝑑, 𝑠, 𝑧, 𝜃, 𝑟, 𝑛, ʃ), it totally assimilates.

o /al-salaam/ → [as-salaam]

3 4

ADDITIONAL DATA

o Now, let’s look at the following additional data:

al-ʒanuub DEF-south

al-ʒaziira DEF-island

al-ʒabal DEF-mountain

al-ʒuhd DEF-effort

3 5

BLOCKING EFFECT

o The blocking effect:

o The sound /ʒ/ is coronal, so we expect it to assimilate (*[aʒ-ʒanuub]).

o However, it does not! It stays [al-ʒanuub].

o The assimilation is blocked specifically by /ʒ/.

3 6

CONSTRAINTS

o To model this pattern, we need three constraints:

o *l-[cor]: Assign one violation mark to every sequence of [l] + coronal consonant (this drives the
assimilation).

o IDENT(lat): The output lateral feature value must match the input. (Don't change /l/ to [s], [t],
etc.).

o *ʒʒ: Assign one violation mark to every geminated [ʒ] in the output.

o What is the ranking of these constraints? Create tableaux for /al-bint/, /al-ʃams/, and /al-
ʒanub/.

3 7

OT ANALYSIS

o Ranking:

o *ʒʒ >> *l-[cor] >> IDENT(lat)

*ʒʒ *l-[cor] IDENT(lat)

/al/+/bint/ ☛ albint

abbint *!

/al/+/ʃams/ alʃams *!

☛ aʃʃams *

/al/+/ʒanub/ ☛ alʒanub *

aʒʒanub *! *3 8

HG ANALYSIS

o Weighting:

o The weight of *l-[cor] must be higher than the weight of IDENT(lat) and lower than the combined
weights of IDENT(lat) and *ʒʒ.

*ʒʒ
w = 2

*l-[cor]
w = 2

IDENT(lat)
w = 1 H

/al/+/bint/ ☛ albint 0

abbint -1 -1

/al/+/ʃams/ alʃams -1 -2

☛ aʃʃams -1 -1

/al/+/ʒanuub/ ☛ alʒanuub -1 -2

aʒʒanuub -1 -1 -33 9

RUNNING THE OT AND HG SOLUTIONS

o Activity:

o Create a .txt input file for this problem

o Make sure to either use HTML codes or alphabet letters for IPA symbols:

o For [ʃ], you can either use [sh] or [ʃ]

o For [ʒ], you can either use [zh] or [ʒ]

o Run the OT and HG solutions on OT-help

4 0

REAL-WORLD APPLICATION

THE REALITY OF RESEARCH

o So far, we have looked at small-scale problems (3-4 constraints, 2-3 tableaux, 2 candidates)

o In actual phonological and morphological research, the data is rarely this clean.

o Case Study: Moroccan Arabic Broken Plurals:

o This is data from my current work on Moroccan Arabic broken plural.

o I aim to predict how broken plurals can be derived from their corresponding singulars.

o The complexity:

o Multiple possible affixes.

o Multiple changes between input and output: vowel changes, deletion, and epenthesis.

o Many possible outputs for the same input.

4 2

DATA: CCaC PLURALS

o CCaC plurals are derived from CCC and CVC roots.

4 3

DATA: CCuC PLURALS

o CCuC plurals are derived from CCC and CVC roots.

4 4

DATA: CCaCi PLURALS

o CCaCi plurals are derived from CCC and CVC roots.

4 5

DATA: CCaCəC PLURALS

o CCaCəC plurals are derived from CCCC, CVCC and CCVC roots.

4 6

THE SCALE OF THE PROBLEM

o The Dataset:

o 9 Tableaux (Different input types)

o Up to 6 Candidates per tableau (Competing outputs)

o 8 Constraints

o Why you cannot do this by hand:

o With 8 constraints, there are 40,320 possible rankings

o It is cognitively impossible to track crucial ranking arguments across 40,000 possibilities without
making an error

o Let’s run this problem on OT-Help

4 7

BEYOND OT-HELP

o It gets even more complicated when the data involving lexical statistics, variability, and
exceptionality: OT-help can’t handle these cases.

o Consider this additional broken plural data from Moroccan Arabic:

o Let’s try to run add this data to the input file and run it in OT-help

4 8

BEYOND OT-HELP

o Another example that involves variable and exceptional patterns is definite article
assimilation in Moroccan Arabic, which is far more complicated than in MSA.

o 128 Tableaux (Different input types)

o 3 Candidates per tableau (Competing outputs)

o 369 Constraints

o More recent tools and algorithms can handle such cases, e.g., MaxEnt learners (Staubs
2011; Nirheche 2024).

o I used HGR (Staubs 2011) in to handle the definite article assimilation example (Nirheche
2025).

4 9

SUMMARY

o We’ve seen that, as datasets grow, manual calculation becomes impossible.

o Tools like OT-Help ensure consistency and reproducibility.

o OT-Help is an example tool that is accessible, web-based, and handles both Ranking (OT)
and Weighting (HG).

o Resources for OT-help 2.0:

o Webpage: https://people.umass.edu/othelp/

o Manual: https://people.umass.edu/othelp/OTHelp.pdf

5 0

https://people.umass.edu/othelp/
https://people.umass.edu/othelp/OTHelp.pdf

THANK YOU

	Slide 1: Ot-help 2.0: a Computational Tool for Phonological Analysis
	Slide 2: roadmap
	Slide 3: Optimality theory vs. harmonic grammar
	Slide 4: Theoretical Refresher: Optimality Theory
	Slide 5: Beyond Ranking: Harmonic Grammar
	Slide 6: Beyond Ranking: Harmonic Grammar
	Slide 7: Why Harmonic Grammar? (The "Gang Effect")
	Slide 8: example of The Gang Effect
	Slide 9: Why use computational tools?
	Slide 10: The Limits of "Pen and Paper" Phonology
	Slide 11: Advantages of using Computational Tools
	Slide 12: Modeling the Learner
	Slide 13: How RCD Works
	Slide 14: How RCD Works (example)
	Slide 15: How RCD Works (example)
	Slide 16: How RCD Works (example)
	Slide 17: Ot-help 2.0
	Slide 18: Tools for running ot and hg simulations
	Slide 19: Setting up ot-help 2.0
	Slide 20: How OT-Help 2.0 Works
	Slide 21: Formatting input file
	Slide 22: Case Study 1: English Nasals
	Slide 23: English Nasals (Data from UMass Amherst LING302)
	Slide 24: generalization
	Slide 25: Constraints
	Slide 26: OT Analysis
	Slide 27: HG Analysis
	Slide 28: Creating the Input File
	Slide 29: Creating the Input File
	Slide 30: Running the OT Solution
	Slide 31: Running the HG Solution
	Slide 32: Case Study 2: Definite Article assimilation in Arabic
	Slide 33: Definite Article assimilation in msa
	Slide 34: generalization
	Slide 35: additional data
	Slide 36: blocking effect
	Slide 37: Constraints
	Slide 38: Ot Analysis
	Slide 39: Hg Analysis
	Slide 40: Running the ot and hg solutions
	Slide 41: Real-World Application
	Slide 42: The Reality of Research
	Slide 43: Data: ccac plurals
	Slide 44: Data: ccuc plurals
	Slide 45: Data: ccaci plurals
	Slide 46: Data: ccacəC plurals
	Slide 47: The Scale of the Problem
	Slide 48: Beyond ot-help
	Slide 49: Beyond ot-help
	Slide 50: Summary
	Slide 51: Thank you

