I=byYb wyl=Jl v~y Ayl
Avlwll ngls2)lg ~aIV1 Ay
+oONoLIZ+ LSALCLA LUZO OLLSO X QQOE
+oZlol+ | +ORUZUZI A +LoO00lZ] +ZIHRoIZI

Université Mohammed V de Rabat
Faculté des Lettres et des Sciences Humaines

OT-HELP 2.0: A COMPUTATIONAL TOOL
FOR PHONOLOGICAL ANALYSIS

ALI NIRHECHE
anirheche@umass.edu

Workshop at FLSHR-UMS5, Rabat
January 2nd, 2026

ROADMAP

OPTIMALITY THEORY VS. HARMONIC GRAMMAR
WHY USE COMPUTATIONAL TOOLS?

OT-HELP 2.0

CASE STUDY 1: ENGLISH NASALS

CASE STUDY 2: DEFINITE ARTICLE ASSIMILATION
IN MSA

REAL-WORLD APPLICATION

OPTIMALITY THEORY
VS.
HARMONIC GRAMMAR

THEORETICAL REFRESHER: OPTIMALITY THEORY

o Core architecture:
o GEN: Generates infinite candidates.
o CON: UG provides a set of universal constraints (markedness and faithfulness)
o EVAL: Evaluates candidates based on a hierarchy of constraints.

o Strict Domination:
o Constraints are ranked (C1>>C2>>C3).

o A violation of a higher-ranked constraint is fatal, regardless of how many times lower constraints
are violated.

o The winner: The candidate that survives the highest fatal violations.

BEYOND RANKING: HARMONIC GRAMMAR

o The shift:

o Proposed by Legendre et al (2006).
S Moves from Ranking to Weighting.

o How it works:
o Each constraint has a numerical Weight (w).
o Violations are negative integers (usually -1).
S Harmony (H): The sum of weighted violations:
Harmony(H)=> (WeightxViolations)
o The winner: The candidate with the highest (least negative) Harmony score.

BEYOND RANKING: HARMONIC GRAMMAR

o Let’s take this language which enforces the requirement to only have open syllables
through deletion.

o An OT tableau where NoCobpA and DepP outranks MAXx:

/CVC/ NoCoba i DEP | MaX
a. = CV ' *
b. CVC I
c. CV.CV l I

o An HG tableau where NoCobA and DEP has more weight than MaAx:

NoCobpA | DEP MAX

/CVC/ w=2 |w=2|w=1|H
a.w CV -1 -1
b. CVC -1

c. CV.CV -1 -2

WHY HARMONIC GRAMMAR? (THE "GANG EFFECT")

o The limitation of OT:

o In OT, if Constraint A dominates B and C (A4 > B, C), one violation of A overcomes any number of
violations for B and C.

o Cumulative interaction (Gang Effects):

o In HG, lower-weighted constraints can "gang up" to overcome a higher-weighted constraint.

o Harmonic Grammar allows us to test if a language requires this kind of cumulative
interaction.

EXAMPLE OF THE GANG EFFECT

o No gang effect in OT: o Gang effect in HG:
s .) (
/input/ A|B /input/
- 0
a. 5 candidate 1 4 = candidate 1
b. candidate 2 || *! b. candidate 2
])
/input/ A|C /input/
. *
a. ¥ candidate 1 4 = candidate 1
b. candidate 2 || *! b. candidate 2
a. '= candidate 1 * E * a. candidate 1
b. candidate 2 || *! : b. 1= candidate 2 -1

WHY USE COMPUTATIONAL
TOOLS?

THE LIMITS OF "PEN AND PAPER" PHONOLOGY

o Small-scale systems:
o We are used to analyzing small datasets (3-4 candidates, 3-4 constraints).
S It is easy to find a ranking for a single input by hand.

o The reality of research:
o Linguistic systems often involve dozens of inputs and constraints.
o The factorial growth of rankings:
o 3 Constraints = 3! (6 possible rankings).

o 5 Constraints = 5! (120 possible rankings).
o 10 Constraints = 10! (3,628,800 possible rankings).

o The human error factor:

S It is often difficult to manually check if a ranking for Input A contradicts the ranking required for
Input B and so on.

ADVANTAGES OF USING COMPUTATIONAL TOOLS

o Consistency:
o Computational tools don't make judgment calls. They apply the logic you give them.
o They ensures your analysis is internally consistent across all data points.

o Modeling the learning process (L1 Acquisition):

o Many tools (including OT-Help) use learning algorithms (e.g., Recursive Constraint Demotion)
that replicate how L1 learners arrives at a grammar.

o Factorial typology:

o Beyond analyzing one language, we want to know: What other languages does my constraint set
predict?

o Does your analysis predict impossible languages? (Overgeneration).
o Does your analysis miss attested languages? (Undergeneration).

MODELING THE LEARNER

o The learning problem:

o A child (the learner) is born with a set of universal constraints (CON).
o The child hears “data" (the winners) from their caregivers.
o The Task: Find the specific ranking that makes those winners optimal.

o Replicating the learner:

o Computational tools implement Learning Algorithms theorized to reflect how the human mind
works.

o Recursive Constraint Demotion (RCD) is an example of an algorithm used in such tools.

HOW RCD WORKS

o Tesar & Smolensky (1998) proposed that learning happens "top-down”,

o The learner compares the Winner (what they heard) against a Loser (what their current
grammar thinks is better).

(@)

(@)

(@)

The learner identifies constraints that prefer no losers (those with no 'L' marks).
These constraints are placed in the highest possible ranking tier.

The learner then discards any loser that is ruled out by those constraints.

The process repeats for the remaining constraints and remaining losers.

HOW RCD WORKS (EXAMPLE)

o Let’s look at our earlier pattern of coda deletion and see how the ranking is learned under
RCD.

o Step 1: All constraints are unranked.

/CVC/ Max E NoCobaA i DEp
a. CV~CVC || L ' W
b. CV~CVCV| L W

HOW RCD WORKS (EXAMPLE)

©)

Step 2: both NoCobA and Dep do not prefer a loser, so they are put at a higher ranking tier.

b. CV~CV.CV

/CVC/ MaxX i NoCoba i DEp
a. CV~CVC | L ' W
L i LW

—

/CVC/ NoCobpa E DEP | Max
a. CV~CVC W L
W | L

b. CV ~CV.CV

HOW RCD WORKS (EXAMPLE)

o Step 3: NoCopA and DEep eliminate CVC and CV.CV.

[
/CVC/ NoCopA ' DEP | MaX
a—CV—CVC W L
[
b C‘VT - C‘VT] l ‘V‘VT L

o Since there are no other losers, the final ranking is: NOCoDA, DEP >> MAX

OT-HELP 2.0

TOOLS FOR RUNNING OT AND HG SIMULATIONS

o OTSoft (Hayes et al 2013):
o An excel-based powerful tool for OT analysis, but requires Windows/Excel setup.

o Praat (Boersma & Weenink 2022):

o Known for phonetic analysis, but contains an OT learning module (GLA), but has a steep learning
curve and requires coding knowledge.

o OT-Help (Staubs et al 2010):
o Our focus today
o Java/web-based tool.
o User-friendly interface.
S It can solve for both Ranked Constraints (OT) and Weighted Constraints (Harmonic Grammar).

SETTING UP OT-HELP 2.0

1. Goto OT-help 2.0 webpage: https://people.umass.edu/othelp/download.html

2. Download OT-help 2.0 by clicking on OT-Help2.jar

3. Download or124.jar. This file must go inside a folder you should create and name "OTH-
lib". This folder should be within the same folder where you have OT-Help2.jar

4. If you don't have Java installed, you must install it. Here is where to download Java:
https://www.java.com/en/download/

o These instructions work for both Windows and Mac.

https://people.umass.edu/othelp/download.html
https://www.java.com/en/download/

HOW OT-HELP 2.0 WORKS

o Input:
o A simple .txt file (tab-delimited).
S Format: Matrix of inputs, candidates, and violations (basically your OT tableau).

o Processing:

o For OT: Uses Recursive Constraint Demotion (Tesar 1995; Tesar and Smolensky 1998) to find a
ranking.

o For HG: Uses Linear Programming to find weights.

o Output:
S Solvable? (Yes/No).
o The ranking or weights.
S The predicted typology (list of all possible languages).

FORMATTING INPUT FILE

o Rows 1 & 2: Constraint names
o Column 1: Inputs
o Column 2: Candidates
o Column 3: Winner indication (Put a "1" next to the actual output)
o Columns 4+: Violation marks (Integers: 1, 2, etc.)
| Dep NoCoda Max
Dep NoCoda Max
CVC CV 1
CVC 1
CVCV 1

o Let’s run the coda deletion simulation in OT-help.

CASE STUDY 1: ENGLISH NASALS

ENGLISH NASALS (pbATA FROM UMASS AMHERST LING302)

o Let’s look at the nasal and oral vowels of English. What is their distribution?

1. kad
2. pad
3. Spaig

4. eib

cod’
‘pad’
‘sprig’
‘Abe’

kan
pEn

Spain

CIIm

‘con’
‘pan’

‘spring’

‘aim’

GENERALIZATION

o The generalization:
o Vowels are oral generally.
S Vowels become nasalized only when preceding a nasal consonant.
o This is an allophonic distribution (Complementary Distribution).

o The goal:

o We want our grammar to force nasalization in:
o /pan/ — [p&n]

o But prevent it in:
o /pad/ — [paed].

CONSTRAINTS

o Markedness constraints:

o *VN: Assign one violation mark to every sequence of Oral Vowel + Nasal Consonant. (Don't have
oral vowels before nasals).

S *V-nas: Assign one violation mark to every nasal vowel. (Nasal vowels are marked).

o Faithfulness constraint:
o IDENT(nasal): Output nasality must match Input nasality.

o What is the ranking of these constraints? Create tableaux for /pad/ and /pan/.

OT ANALYSIS

o Ranking:

S *VN >> *V-nas, IDENT(nasal)

/pad/

/pan/

*VN

*|

*V-nas

*|

IDENT(nasal)

HG ANALYSIS

o Weighting:
S The weight of *VN alone must be heavier than the sum of the weights of *V-nas and IDENT(nasal)
combined.

*VN *V-nas IDENT(nasal)
w=3 w=1 w=1 H

/pad/ i pad 0

pad -1 -1 -2
/pan/ pan -1 3

CREATING THE INPUT FILE

o Instructions:

1.

2
3.
4

Open your text editor (e.g., notepad).

Type the constraint names in the first two rows.

Enter the inputs /pan/ and /pad/ with their candidates (do not use ‘/’ in the text editor).
Use "1" to mark the winner, and violations.

0 Note:

O

O

O

In the text file, use TABS between columns, not spaces.
You should use HTML code for special characters like IPA symbols and diacritics (3 -> ã)
You may also edit the .txt file in an Excel spreadsheet.
| Dep NoCoda Max
Dep NoCoda Max
CVC CvV 1 1
CvVC 1
CVCV 1

CREATING THE INPUT FILE

o Check your text file against the one below.

*VN
*VN
pad pad 1
pãd
pan pan 1

pãn 1

*V-nas

*V-nas

IDENT(nasal)

IDENT(nasal)

RUNNING THE OT SOLUTION

o Instructions:

1. Open OT-Help2.jar.
Drag your text file into the OT-Help window.
Click "OT Solution".

Analyze the Result:
o Status: Solved (Blue background).

=

o Ranking Found: *VN >> *V-nas, IDENT(nasal)
o Does this match our hand-written analysis?
o What can you say about the typology?

RUNNING THE HG SOLUTION

o Instructions:
o Go back to the main page (or refresh).
o Click “HG Solution".
o Analyze the Result:

o Look at the numbers assigned.

o Does this match our hand-written analysis (the weight of *VN is heavier than the sum of the weights of
*V-nas and IDENT(nasal) combined)?

CASE STUDY 2: DEFINITE ARTICLE
ASSIMILATION IN ARABIC

DEFINITE ARTICLE ASSIMILATION IN MSA

o Let’s look at the following data from MSA. What is the generalization?

a. al-bint DEF-girl
al-kalaam DEF-speech
al-qaanuun DEF-law
al-Gajn DEF-eye

b. ar-rabii€ DEF-spring
ab-6awb DEF-tissue
as-salaam DEF-peace

aJ-[ams DEF-sun

GENERALIZATION

o General rule (faithfulness):
o Usually, the /I/ remains [l].

o Assimilation context:

o When /l/is followed by a Coronal consonant (t,d, s, z, 8, r, n,), it totally assimilates.
o /al-salaam/ — [as-salaam]

ADDITIONAL DATA

o Now, let’s look at the following additional data:

al-zanuub DEF-south
al-zaziira DEF-island
al-zabal DEF-mountain

al-zuhd DEF-effort

BLOCKING EFFECT

o The blocking effect:

o The sound /3/ is coronal, so we expect it to assimilate (*[a3-zanuub]).
S However, it does not! It stays [al-3anuub].

o The assimilation is blocked specifically by /3/.

CONSTRAINTS

o To model this pattern, we need three constraints:

o *|-[cor]: Assign one violation mark to every sequence of [I] + coronal consonant (this drives the
assimilation).

S IDENT(lat): The output lateral feature value must match the input. (Don't change /I/ to [s], [t],
etc.).

S *23: Assign one violation mark to every geminated [3] in the output.

o What is the ranking of these constraints? Create tableaux for /al-bint/, /al-fams/, and /al-
zanub/.

OT ANALYSIS

o Ranking:

o *33 >> *|-[cor] >> IDENT(lat)

/al/+/bint/

/al/+/[ams/

/al/+/3anub/

w albint
abbint
alfams

w affams
- alzanub

az3anub *1

*I-[cor] IDENT(lat)

*|

*|

HG ANALYSIS

o Weighting:

S The weight of *I-[cor] must be higher than the weight of IDENT(lat) and lower than the combined
weights of IDENT(lat) and *33.

*23 *|-[cor] IDENT(lat)
w=2 w=2 w=1 H
/al/+/bint/ w- albint 0
abbint -1 -1
/al/+/[ams/ alfams -1 -2
w affams -1 -1
/al/+/3anuub/ w alzanuub -1 -2

azzanuub -1 -1 -3

RUNNING THE OT AND HG SOLUTIONS

o Activity:
o Create a .txt input file for this problem

o Make sure to either use HTML codes or alphabet letters for IPA symbols:
o For [[], you can either use [sh] or [ʃ]
o For [3], you can either use [zh] or [ʒ]

o Run the OT and HG solutions on OT-help

REAL-WORLD APPLICATION

THE REALITY OF RESEARCH

o So far, we have looked at small-scale problems (3-4 constraints, 2-3 tableaux, 2 candidates)
o Inactual phonological and morphological research, the data is rarely this clean.

o Case Study: Moroccan Arabic Broken Plurals:
o This is data from my current work on Moroccan Arabic broken plural.

S | aim to predict how broken plurals can be derived from their corresponding singulars.
o The complexity:

o Multiple possible affixes.

o Multiple changes between input and output: vowel changes, deletion, and epenthesis.

o Many possible outputs for the same input.

DATA: CCaC PLURALS

o CCaC plurals are derived from CCC and CVC roots.

Root Singular Plural Gloss

a. klb ksalb klab ‘dog’
bnt bont bnat ‘girl’
qnt gont gnat ‘corner’

b. dib dib djab ‘wolf’
bir bir bjar ‘well’

fil fil fjal ‘elephant’

DATA: CCuC PLURALS

©)

CCuC plurals are derived from CCC and CVC roots.

Root
a. dnb
frg
knz
b. dfar
ras*
nif

Singular Plural

donb
forg
kanz
d*ar
ras*
nif

dnub
fruS
knuz
dSjur
rjus*
njuf

Gloss
‘sin’
‘branch’
‘treasure
‘house’
‘head’

‘nose’

b

DATA: CCaCi PLURALS

o CCaCi plurals are derived from CCC and CVC roots.

Root Singular Plural Gloss
a. dfw dofwa dfawi ‘prayer’
frq forqa fraqi ‘girl’
hkm hokma hkami ‘cheek’
b. il lila ljali ‘night’
faf Cafja Twafi ‘fire’
saq sagja swaqi ‘flume’

DATA: CCaCaC PLURALS

o CCaCaC plurals are derived from CCCC, CVCC and CCVC roots.

Root Singular Plural Gloss
a. fndqg fondaq fnadeq ‘hotel’
mskn moskin msakan ‘poor’

b. xatm xatom xwatom ‘ring’
git'n git'un gjat'on ‘tent’
c. blas® blas‘a blajes® ‘place’

dqiq dqiqa dgajeq ‘minute’

THE SCALE OF THE PROBLEM

o The Dataset:
o 9 Tableaux (Different input types)

S Up to 6 Candidates per tableau (Competing outputs)
o 8 Constraints

o Why you cannot do this by hand:
o With 8 constraints, there are 40,320 possible rankings
o It is cognitively impossible to track crucial ranking arguments across 40,000 possibilities without
making an error

o Let’s run this problem on OT-Help

BEYOND OT-HELP

o It gets even more complicated when the data involving lexical statistics, variability, and
exceptionality: OT-help can’t handle these cases.

o Consider this additional broken plural data from Moroccan Arabic:

Root Singular Plural Gloss
a. ktb ktab ktub~ktuba ‘book’

qlb galb qlub~qluba ‘heart’
b. bit bit bjut~bjuta ‘house’

hit* hit" hjut*~hjuta ‘wall’

o Let’s try to run add this data to the input file and run it in OT-help

BEYOND OT-HELP

o Another example that involves variable and exceptional patterns is definite article
assimilation in Moroccan Arabic, which is far more complicated than in MSA.

o 128 Tableaux (Different input types)
S 3 Candidates per tableau (Competing outputs)
o 369 Constraints

o More recent tools and algorithms can handle such cases, e.g., MaxEnt learners (Staubs
2011; Nirheche 2024).

o lused HGR (Staubs 2011) in to handle the definite article assimilation example (Nirheche
2025).

SUMMARY

o We've seen that, as datasets grow, manual calculation becomes impossible.
o Tools like OT-Help ensure consistency and reproducibility.

o OT-Help is an example tool that is accessible, web-based, and handles both Ranking (OT)
and Weighting (HG).

o Resources for OT-help 2.0:
o Webpage: https://people.umass.edu/othelp/
o Manual: https://people.umass.edu/othelp/OTHelp.pdf

https://people.umass.edu/othelp/
https://people.umass.edu/othelp/OTHelp.pdf

THANK YOU

	Slide 1: Ot-help 2.0: a Computational Tool for Phonological Analysis
	Slide 2: roadmap
	Slide 3: Optimality theory vs. harmonic grammar
	Slide 4: Theoretical Refresher: Optimality Theory
	Slide 5: Beyond Ranking: Harmonic Grammar
	Slide 6: Beyond Ranking: Harmonic Grammar
	Slide 7: Why Harmonic Grammar? (The "Gang Effect")
	Slide 8: example of The Gang Effect
	Slide 9: Why use computational tools?
	Slide 10: The Limits of "Pen and Paper" Phonology
	Slide 11: Advantages of using Computational Tools
	Slide 12: Modeling the Learner
	Slide 13: How RCD Works
	Slide 14: How RCD Works (example)
	Slide 15: How RCD Works (example)
	Slide 16: How RCD Works (example)
	Slide 17: Ot-help 2.0
	Slide 18: Tools for running ot and hg simulations
	Slide 19: Setting up ot-help 2.0
	Slide 20: How OT-Help 2.0 Works
	Slide 21: Formatting input file
	Slide 22: Case Study 1: English Nasals
	Slide 23: English Nasals (Data from UMass Amherst LING302)
	Slide 24: generalization
	Slide 25: Constraints
	Slide 26: OT Analysis
	Slide 27: HG Analysis
	Slide 28: Creating the Input File
	Slide 29: Creating the Input File
	Slide 30: Running the OT Solution
	Slide 31: Running the HG Solution
	Slide 32: Case Study 2: Definite Article assimilation in Arabic
	Slide 33: Definite Article assimilation in msa
	Slide 34: generalization
	Slide 35: additional data
	Slide 36: blocking effect
	Slide 37: Constraints
	Slide 38: Ot Analysis
	Slide 39: Hg Analysis
	Slide 40: Running the ot and hg solutions
	Slide 41: Real-World Application
	Slide 42: The Reality of Research
	Slide 43: Data: ccac plurals
	Slide 44: Data: ccuc plurals
	Slide 45: Data: ccaci plurals
	Slide 46: Data: ccacəC plurals
	Slide 47: The Scale of the Problem
	Slide 48: Beyond ot-help
	Slide 49: Beyond ot-help
	Slide 50: Summary
	Slide 51: Thank you

