University of Massachusetts Amherst

DISTANCE-BASED SIBILANT HARMONY IN MOROCCAN ARABIC

Ali Nirheche anirheche@umass.edu

Optional Sibilant Harmony in Moroccan Arabic

• Moroccan Arabic has optional sibilant harmony, triggered by [3] and targeting [z] and [s] (Harrell, 1962; Heath, 1987, 2002, Zellou, 2010, 2013).

(1)	Non-harmonize	d	Harmo	nized Gloss
a.	zaz	~	заз	ʻglass'
	zəlliz	~	3əlli3	'tiles'
	zənʒlan	~	3ən3lan	'Sesame seeds'
b.	sərzəm	~	∫ərʒəm	'window'
	sfənz	~	∫fənʒ	'doughnut'
	sətranz	~	∫ətranʒ	'chess'

- Both the harmonized and non-harmonized variants of words are <u>used interchangeably</u> by MA speakers (Weissman, 2007).
- **Research question:** what are the factors that affect which variant is used? How to account for the variation?

Conclusions

- Experimental results show that:
 - The distance between harmonizing segments affects the speaker's choice of using the harmonized vs non-harmonized form.
 - Words derived from a harmonized MSA form must be treated as exceptions
- An analysis using a probabilistic model is needed to predict the variation seen in harmonization patterns of MA.

Predicted factors for harmonization: Distance

- **The hypothesis:** More intervening elements typically reduce the likelihood of harmonization (Odden, 1994; Piggott, 1996; Suzuki, 1998; Walker, 2000c; Rose & Walker, 2004; Hansson, 2010).
 - More Intervening Segment \rightarrow less harmonization:e.g. 'zaz' \rightarrow 'zaz' (glass)Less Intervening Segment \rightarrow more harmonization:e.g. 'zəlliz' \rightarrow 'zəlliz' (tiles)

Predicted factors for harmonization: Voicing

• Hypothesis 1: words with [s] are more prone to harmonization compared to those with [z].

Target is [s]	\rightarrow	more harmonization:	e.g. 'sərzəm' \rightarrow 'ʃərzəm' (window)
Target is [z]	\rightarrow	less harmonization:	e.g. 'zaʒ' → 'ʒaʒ' (glass)

• Hypothesis 2: words with [z] are more prone to harmonization compared to those with [s].

Target is [z]	\rightarrow	more harmonization:	e.g. 'zaʒ' \rightarrow 'ʒaʒ' (glass)
Target is [s]	\rightarrow	less harmonization:	e.g. 'sərzəm' \rightarrow 'ʃərzəm' (window)

Predicted factors for harmonization: Morphological Complexity

- **The hypothesis:** Complex forms (those with multiple affixes) might resist harmonization compared to simpler forms.
- Cyclical Application of Harmonization:
 - Harmonization in complex forms might need to occur at each morphological level (root, root+affix1, root+affix1+affix2, etc.) (Bakovic, 2000).
 - ➢ Harmonization more challenging in complex words.

Simple Forms	\rightarrow	More harmonization:	e.g. 'zwaz' \rightarrow 'zwaz' (marriage)
Complex Forms	\rightarrow	less harmonization:	e.g. 'z-zwaz' \rightarrow 'z-zwaz' (the marriage)

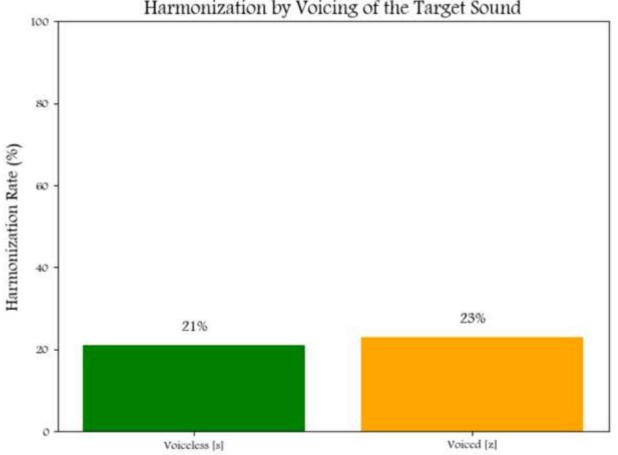
Experiment: an online survey

- **Participants:** •
 - Total of 48 adult participants, aged between 18 and 60 years.
 - Criteria: Native MA speakers with proficiency in French and/or English. •
- Stimuli: total of 16 words selected, divided equally between those with [z] and [s], simple and complex forms, and with varying numbers of intervening segments.
 - Voiced [z]: 'zaʒa' (one glass), 'zwaʒ' (marriage), 'mzəwwʒin' (married)....
 - Voiceless [s]: 'sfənʒa' (one doughnut), 'sərʒəm' (window), 'sfərʒla' (one quince).....
- Participants provided with 40 sentences in both English and French: 16 with target words and 24 fillers.
- Participants asked to write their MA translations for each sentence. •
 - English: "I like doughnuts." ٠
 - **English:** "This house has only one window."

French: "J'aime les beignets."

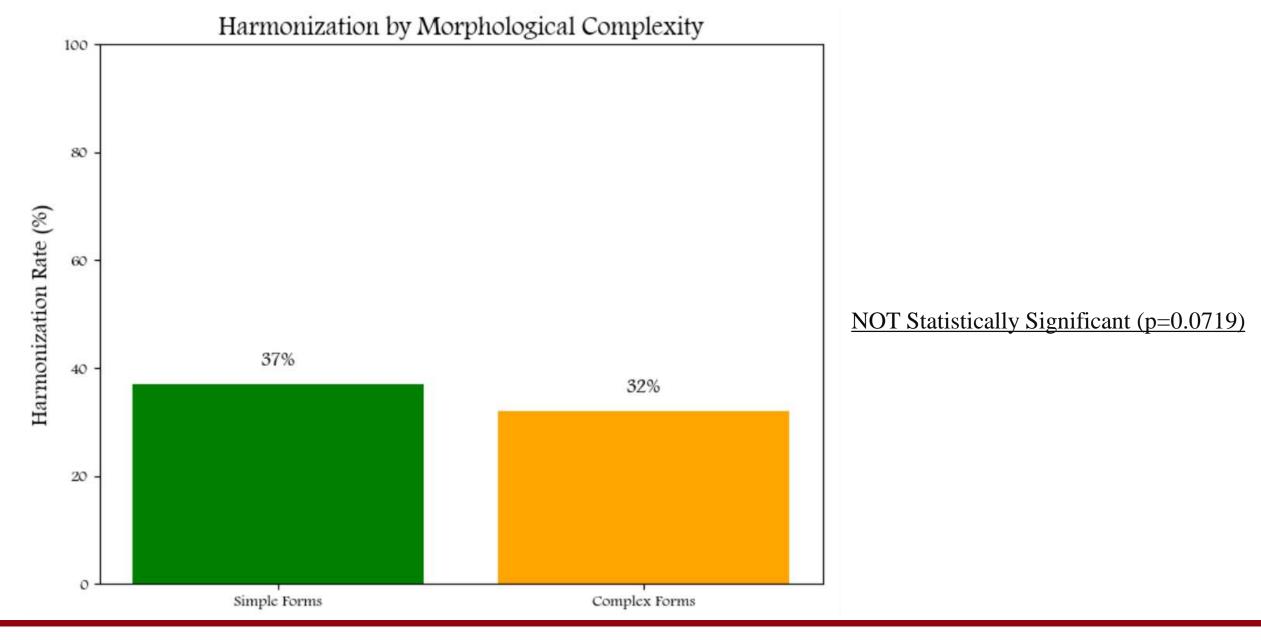
French: "Cette maison n'a qu'une seule fenêtre."

Results

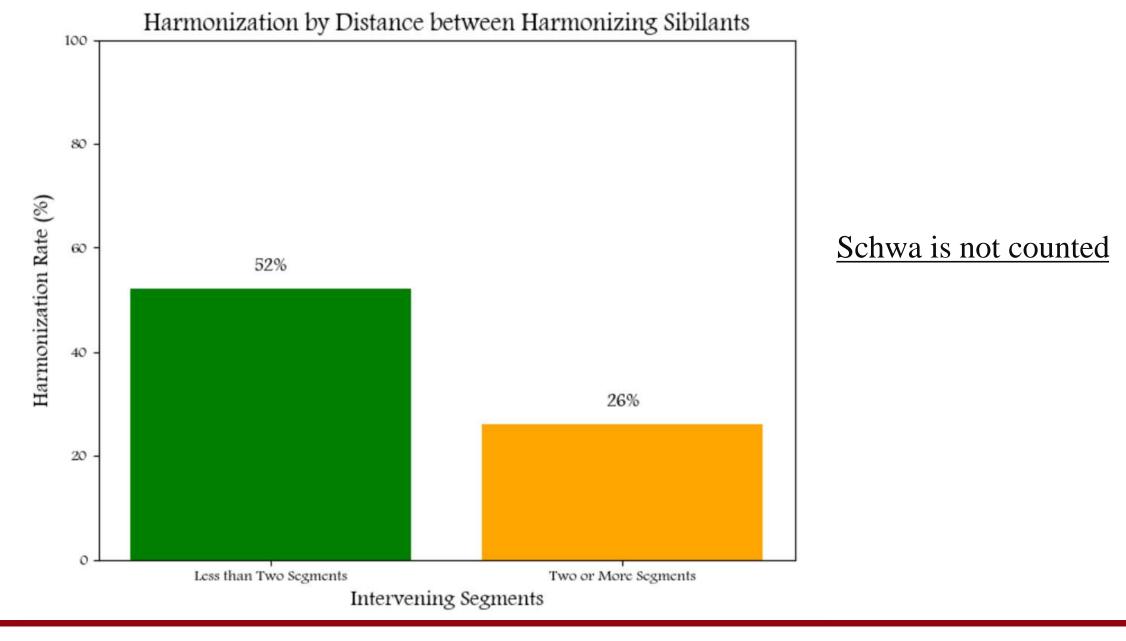

• Most words follow a consistent trend with respect to the three factors

Т

• Two [s] words had a very high harmonization rate: those that are derived from a harmonized MSA form


MA form	MSA form	harmonization rate
zwaʒ	zawaaʒ	14.75%
zəlliza	zaliʒa	16.27%
sfənza	?isfanʒ	17.82%
sfərʒla	safarʒal	15.12%
sətranʒ	∫ataranʒ	81.82%

When excluding such forms, we find that there is no difference in harmonization rates based on voicing ٠



Harmonization by Voicing of the Target Sound

University of Massachusetts Amherst

University of Massachusetts Amherst

University of Massachusetts Amherst

Analysis: Agreement-by-Correspondence (Rose & Walker 2000, 2004)

- Central to enforcing long-distance consonant assimilation.
- Divides the task into establishing a correspondence and ensuring feature agreement.
 - \circ Set up a correspondence between similar output segments.
 - CORR-[place]CC:

Given an output string S, and consonants C_i , Cj in S, where C_i precedes C_j and they differ at most in the feature [place], then a correspondence relation must be present between Ci and Cj.

- Require feature agreement (IDENT[F]-CC) among correspondents.
 - IDENT[place]-CC:

Let C_i be a consonant in the output and C_j be any correspondent of C_i in the output. If C_i is [α place], then C_i is [α place].

Analysis: Distance in ABC

- Distance effects (Hansson 2010):
 - Consonant pairs closer in the string demand stronger correspondence.
 - \circ I use this hierarchy:
 - CORR-[place]_{C-x-C} >> CORR-[place]_{C-∞-C}
 - CORR-[place]_{C-x-C}:

Given an output string S, and consonants C_i and C_j in S, where C_i precedes C_j by only one segment and they differ at most in the feature [place], then a correspondence relation must be present between C_i and C_j .

• CORR-[place]_{$C-\infty-C}$:</sub>

Given an output string S, and consonants C_i and C_j in S, where C_i precedes C_j by any number of <u>segment</u> and they differ at most in the feature [place], then a correspondence relation must be present between C_i and C_j .

Analysis: Sibilant Harmony and Distance

/zaza/	CORR-[place] _{C-X-C}	IDENT[place]- CC	IDENTIO(plac e)	CORR-[place] _{C-∞-}
z _i aʒ _i a		*!		
z _i az _j a	*!			*
r 3ia3ia			*	
/zwaʒ/	CORR-[place] _{C-X-C}	IDENT[place]- CC	IDENTIO (place	CORR-[place] _{C-∞-}
		CC)	С
z _i waz _i		*!)	C
z _i waz _i © z _i waz _j)	<u>C</u> *

Experimental results show variation

Input	Variants	% of Harmonization
/zaza/	zaza	63%
	заза	37%
/zwaʒ/	zwaz zwaz	86% 14%

- Classical OT with Strict Rankings:
 - Predicts absolute outcomes; no partial assimilation.
 - Fails to account for the variation in harmonization within the same form.
- Maximum Entropy Grammar (Goldwater & Johnson, 2003):
 - Underlying representations map to a probability distribution over possible surface representations.
 - Uses Harmonic Grammar with weights instead of strict rankings
 - \circ Subtle differences in constraint weights enable variable outcomes.

• Maximum Entropy grammars allow phonologists to analyze variable processes.

NOCODA MAX /bat/ p(SR|UR) Weights > 50 1 Η bat -1 -50 ~0 🖙 ba -1 ~1 -1

Categorical Deletion Process

NOCODA MAX /bat/ Weights > 3 2 Η p(SR|UR) -3 ☞ bat -1 .27 🖙 ba -2 .73 -1

Variable Deletion Process

- *H: the sum of the products of constraint weights and their satisfaction
- **p**(**SR**|**UR**): the exponential of harmony, normalized across all possible outputs

Harmonic Grammar in R (Staubs, 2011) was used the algorithm used to find the weights

		CORR-[place] _{C-X-}	IDENT[place]- CC	IDENTIO[place]	CORR- [place] _{C-∞-C}		
/zwaʒ/	p(exp)	1	13.5	1.7	0.1	Н	p(SR UR)
z _i waz _i	0		-1			-13.5	0
☞ z _i waz _j	.83				-1	-0.1	~.83
r 3iwa3i	.17			-1		-1.7	~.17

p(exp): the probability observed in the experimental results.

• This fails to account for the cases exceptional cases

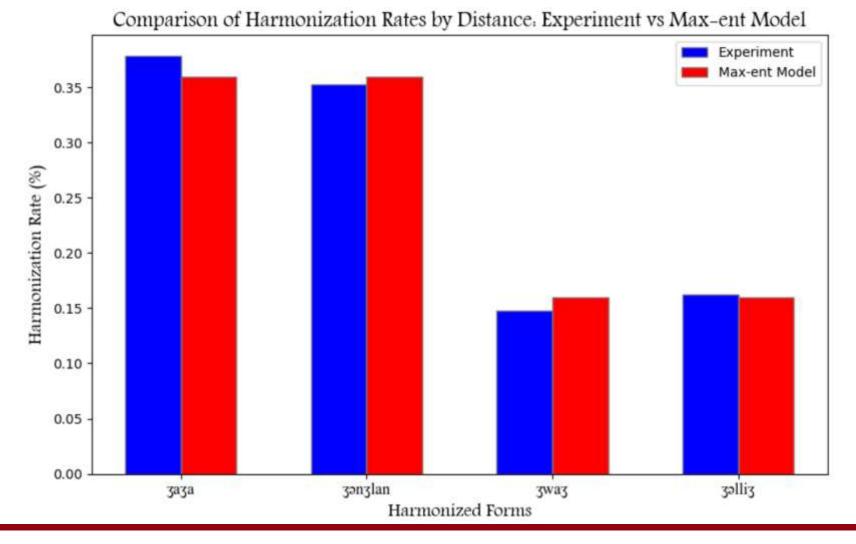
		CORR-[place] _{C-} X-C	IDENT[place]- CC	IDENTIO[place]	$\begin{array}{c} \textbf{CORR-[place]}_{C-\infty}.\\ \textbf{C} \end{array}$		
/stranʒ/	p(exp)	1	13.5	1.7	0.1	Н	p(SR UR)
s _i ətranz _i	0		-1			-13.5	0
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $.19				-1	-0.1	~.83
⊗ ∫ _i ətranʒ _i	.81			-1		-1.7	~.17

Analysis: Accounting for Exceptionality

• Lexically indexed constraints (Pater, 2000, 2009):

- Explain phonological exceptionality, where certain lexical items behave differently from the general phonological rules of a language.
 - Default behavior:

general constraints


• *Exceptionality behavior:* lexically-indexed constraints

Analysis: Accounting for Exceptionality

• **CORR-[place]**_{C- ∞ -C-stran3}: Given and output string S derived from the input <u>stran3</u>, and consonants C_i and C_j in S, where C_i precedes C_j by any number of segment and they differ at most in the feature [place], then a correspondence relation must be present between C_i and C_j.

/stranʒ/	p(exp)	CORR-[place] _{C-} x-c 1	IDENT[place]- CC 13.5	IDENTIO[plac e] 1.7	CORR-[place] _{C-∞-} C 0.1	CORR-[place] _{C-∞-C-stran3}	н	p(SR UR)
s _i ətranz _i	0		-1				-13.5	0
☞ s _i ətranz _j	.19				-1	-1	-3.1	~.19
⊯ ∫i∍tran3i	.81			-1			-1.7	~.81

Comparison: Model vs Experiment

University of Massachusetts Amherst

Main Findings

- The **distance** between the two harmonizing sounds is the main factor determining the probability of harmonization taking place.
- The high rates of harmonization for items is only seen in a couple of items that are **derived from harmonized MSA forms** and therefore should be treated as exceptional.
- A probabilistic model is needed to account for the harmony patterns of MA.

Reflections and Future Directions:

• Limited Word Selection:

• The experiment's limited word set may affect the generalizability of results.

• Preceding Word Effect:

• Potential avoidance of dispreferred consonantal sequences (e.g., 3..z..3).

• Social Factor:

 \circ Regional variation, age, education level, etc.

References

- Bakovic, E. (2000). Harmony, dominance and control [Ph.D., Rutgers The State University of New Jersey, School of Graduate Studies].
- Bensoukas, K. (2004). Markedness, faithfulness and consonant place in Tashlhiyt roots and affixes. Langues et Littératures 18: 115-153.
- Dell, François & Mohamed Elmedlaoui (2002). Syllables in Tashlhiyt Berber and in Moroccan Arabic. Dordrecht: Kluwer.
- Elmedlaoui, M. (1992). Aspects des représentations phonologiques dans certaines langues chamito-sémitiques. Rabat: University Mohammed V Doctorat d'Etat Thesis.
- Gębski, W. (2023). The Development of Sibilant Harmony in Maghrebi Arabic from the Perspective of Language Contact in Pre-Islamic Africa. Mediterranean Language Review, 30(1), 155–180.
- Goldwater, S., & Johnson, M. (2003). Learning OT constraint rankings using a maximum entropy model. Proceedings of the Workshop on Variation Within Optimality Theory, 111–120.
- Hansson, G. Ó. (2010). Consonant Harmony: Long-Distance Interaction in Phonology.
- Harrell, R. (1962). A Short Reference Grammar of Moroccan Arabic. Georgetown University Press.
- Heath, J. (1987). Ablaut and Ambiguity: Phonology of a Moroccan Arabic dialect. State University of New York Press.

Heath, J. (2002). Jewish and Muslim Dialects of Moroccan Arabic. Psychology Press.

References

- Odden, D. (1994). Adjacency Parameters in Phonology. Language, 70(2), 289–330.
- Piggott, G. L. (1996). Implications of Consonant Nasalization for a Theory of Harmony. Canadian Journal of Linguistics/Revue Canadienne de Linguistique, 41(2), 141–174.
- Rose, S., & Walker, R. (2000). Consonant agreement at a distance. Paper presented at NELS 31, Georgetown University.
- Rose, S., & Walker, R. (2004). A Typology of Consonant Agreement as Correspondence. Language, 80(3), 475–531.
- Staubs, R. (2011). Harmonic Grammar in R [Computer software]. University of Massachusetts Amherst. http://blogs.umass.edu/hgr/
- Suzuki, K. (1998). A typological investigation of dissimilation [Ph.D., The University of Arizona].
- Walker, R. (2000). Yaka nasal harmony: Spreading or segmental correspondence? General Session and Parasession on Aspect, 321–332.
- Zellou, G. (2010). Moroccan Arabic Consonant Harmony: A Multiple Causation Hypothesis. Toronto Working Papers in Linguistics, 33.
- Zellou, G. (2013). Consonant harmony in Moroccan Arabic: Similarity and incomplete neutralization. Proceedings of Meetings on Acoustics, 19(1), 060226.

QUESTIONS & ANSWERS

University of Massachusetts Amherst